If it's not what You are looking for type in the equation solver your own equation and let us solve it.
28d^2-7d=0
a = 28; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·28·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*28}=\frac{0}{56} =0 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*28}=\frac{14}{56} =1/4 $
| 3x+x-180=0 | | Y=30+0.15x | | 2u+42=-6(u-3) | | X=1/9y-6 | | 5-((x+8)/4)+((x-5)/3)=0 | | 2(x-2)-4=2(x-9) | | 5=(x+8)/4+(x-5)/3 | | 7/5x+2=16 | | 5=((x+8)/4)+((x-5)/3) | | 7/2x+1/2x=4x+20/2+5/2x | | 9x^2=18x+40 | | x^2-x-20=0 | | -23v+4=8 | | 8t-26=23+t | | 4x+3+6x+8+2x+13=180 | | x/12=7.5/8 | | w+38/3=2/3 | | 2x^2+9x=x-14 | | 4m+6-2m=2m+ | | 2x+13=3x+20+7x+17 | | 4(1.04)^t=t+8 | | 12+-x=5 | | 3(x+-7)=27 | | 4x+2=8+5x | | H(t)=-16^2+1600t | | 2r+r=10 | | 5.5x+2.5=13 | | 0.54*2*3.1415*r+r=20.5 | | 8(v+2)=-3v-28 | | 51/2x+21/2=13 | | 195/360*r+r=10.25 | | 3y-43=8(y-6) |